Новые оптические технологии модификации графена приведут к созданию наноэлектроники нового поколения - «Смартфоны» » Новости Электроники.
Интернет портал Mobzilla.su предлагает огромный выбор новостей с доставкой на дом. » Новости Электроники » Смартфоны » Новые оптические технологии модификации графена приведут к созданию наноэлектроники нового поколения - «Смартфоны»
Новые оптические технологии модификации графена приведут к созданию наноэлектроники нового поколения - «Смартфоны»
Прибор спектроскопии комбинационного рассеяния света (КРС), И.И. Бобринецкий проводит анализ фотохимической модификации графена на КРС Ученые научно-образовательного центра «Зондовая микроскопия и нанотехнология» НИУ МИЭТ получили грант РНФ на продление исследований в рамках проекта «Локальная

Новые оптические технологии модификации графена приведут к созданию наноэлектроники нового поколения - «Смартфоны»


Прибор спектроскопии комбинационного рассеяния света (КРС), И.И. Бобринецкий проводит анализ фотохимической модификации графена на КРС

 


Ученые научно-образовательного центра «Зондовая микроскопия и нанотехнология» НИУ МИЭТ получили грант РНФ на продление исследований в рамках проекта «Локальная фотохимическая реконструкция двумерных углеродных наноструктур для создания элементов интегральной электроники нового поколения». Впервые проект был поддержан РНФ в 2019 году, теперь его реализация продолжится в 2022–2023 гг. Задача исследователей – разработка оптических технологий и создание функциональных элементов оптоэлектроники и сенсорики на основе гибридных графеновых наноструктур, работающих на новых физических эффектах и обладающих биоподобными свойствами.


В ходе реализации первого трехлетнего проекта научная группа под руководством доктора технических наук, профессора кафедры квантовой физики и наноэлектроники МИЭТ Ивана Бобринецкого обнаружила новые эффекты и явления в области фотохимии графена, а также возможности для применения этих эффектов в устройствах биологических сенсоров и новых оптоэлектронных элементов.





Особенно интересным оказался эффект, связанный с фотохимической пришивкой биологических объектов к углеродной атомарной плоскости, — рассказывает Иван Бобринецкий. — Сам эффект фотохимической полимеризации — достаточно известный процесс, на его основе, в частности, работает процесс фотолитографии, основного технологического этапа при изготовлении интегральных микросхем. Нам же удалось показать ковалентную сшивку под действием света биологических наноструктур (белков) и графена, что, по сути, является новом этапом в создании биоэлектронных интерфейсов на молекулярном уровне.



Научная публикация по результатам исследования «Differential Bio-Optoelectronic Gating of Semiconducting Carbon Nanotubes by Varying the Covalent Attachment Residue of a Green Fluorescent Protein» вышла в журнале Advanced Functional Materials в конце февраля 2022 года.


 



Схематичное изображение новых фотоэлектронных устройств на основе флуоресцентного белка и углеродной нанотрубки: оптоэлектронная память (слева) и фототранзистор (справа)


 


В новом проекте, рассчитанном на два года (2022-2023 гг.), ученые планируют развивать описанную технологию применительно к другим биологическим объектам – например, светом «пришивать» молекулы ДНК для создания высокочувствительных биосенсоров.



Процесс фотохимии позволяет проводить локальную пришивку таких объектов под действием фемтосекундных лазерных импульсов — это уже путь к безмасочной литографии и созданию новых функциональных устройств с управляемыми свойствами за счет пришивки различных биологических рецепторов к, например, каналу полевого транзистора для создания систем электронного носа, — поясняет Никита Некрасов, аспирант кафедры Квантовой физики и наноэлектроники.





Аспирант Никита Некрасов готовит подложки для фотохимической пришивки аптамеров


 


Еще одним направлением для дальнейших исследований станет развитие уже разработанных в рамках реализации проекта методов лазерной локальной модификации примененительно к новым двумерным структурам, а именно, ванд-дер-ваальсовым гетероструктурам. Использование таких материалов позволит решить проблему стабильности многих двумерных материалов, предполагают в НОЦ «Зондовая микроскопия и нанотехнология», а использование разрабатываемых фотохимических процессов позволит локально управлять свойствами и модифицировать их при создании новых оптоэлектронных элементов.


В составе команды проекта – молодые ученые, в том числе аспиранты и студенты кафедры квантовой физики и наноэлектроники.


Фундаментальная значимость исследования соответствует мировому уровню, а по ряду областей и превышает его: результаты проекта помогут сформировать новый физико-технологический базис полностью оптических технологий в наноэлектронике на основе двумерных наноматериалов.


Среди перспективных прикладных применений – создание высокочувствительных биосенсоров для определения патогенов, например, в ходе in vivo и in vitro диагностики пациентов и тестирования лекарственных препаратов; создание детекторов сверхкороткого оптического излучения; «зеленой технологии» для солнечных батареей и многое другое.


 


 


Источник: https://miet.ru/news/143643


 


{full-story limit="10000"}
Ctrl
Enter
Заметили ошЫбку?
Выделите текст и нажмите Ctrl+Enter
Мы в
Комментарии
Минимальная длина комментария - 50 знаков. комментарии модерируются
Комментариев еще нет. Вы можете стать первым!
Комментарии для сайта Cackle


Смотрите также
интересные публикации

      
Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика