Ученые оптимизируют процесс формирования микро- и наноструктур - «Новости Электроники» » Новости Электроники.
Интернет портал Mobzilla.su предлагает огромный выбор новостей с доставкой на дом. » Новости Электроники » Ученые оптимизируют процесс формирования микро- и наноструктур - «Новости Электроники»
Ученые оптимизируют процесс формирования микро- и наноструктур - «Новости Электроники»
На рисунке выше: результат компьютерного моделирования осесимметричной структуры и изображение изготовленной структуры в растровом электронном микроскопе Доцент Института физики и прикладной математики, старший научный сотрудник Научно-исследовательской лаборатории электронной микроскопии (НИЛ ЭМИ)

Ученые оптимизируют процесс формирования микро- и наноструктур - «Новости Электроники»


На рисунке выше: результат компьютерного моделирования осесимметричной структуры и изображение изготовленной структуры в растровом электронном микроскопе


 


Доцент Института физики и прикладной математики, старший научный сотрудник Научно-исследовательской лаборатории электронной микроскопии (НИЛ ЭМИ) НИУ МИЭТ А.В. Румянцев займется разработкой метода и созданием комплекса программ для моделирования формирования микро- и наноструктур фокусированным ионным пучком в многослойных мишенях.


 


О чем это


Важной задачей современных технологий является формирование микро- и наноструктур заданной формы для создания, модификации и характеризации устройств электроники, фотоники и смежных областей. Одним из перспективных подходов для ее решения является использование метода фокусированного ионного пучка (ФИП), в котором наноразмерный ионный зонд перемещается по подложке и локально удаляет материал. В особенности сложны технологические задачи, в которых требуется формирование углублений методом ФИП в многослойных мишенях. Среди подобных задач можно отметить модификацию интегральных микросхем, а также воздействие ФИП на подложку через маскирующие слои металлов или диэлектриков для достижения на ней предельно малых размеров элементов создаваемого рельефа. Их решение в настоящее время осуществляется, в основном, ресурсозатратным методом «проб и ошибок». Более эффективный подход, который будет реализован в новом проекте МИЭТа, основан на детальном изучении взаимодействия ускоренных ионов с веществом и проводимом на основе выявленных закономерностей компьютерном моделировании формирования структур.




 


Что будет сделано



В процессе работы мы постараемся подробно рассмотреть актуальную для задач микроэлектроники систему кремний-диоксид кремния (Si-SiO2), — говорит Александр Румянцев. — Экспериментальные исследования планируем провести на электронно-ионном микроскопе Helios Nanolab 650 в научно-исследовательской лаборатории электронной микроскопии университета. Для детальной характеризации получаемых структур и сравнения результатов расчетов и экспериментов будет использоваться просвечивающий электронный микроскоп TitanThemis 200.





На рисунке: компьютерное моделирование прямоугольного углубления и сравнение результатов расчета и эксперимента


 


В чем отличие нового проекта от аналогов


На сегодняшний день подходы для моделирования структур, создаваемых на поверхности простых веществ, разработаны достаточно хорошо, а основной объем исследований был выполнен для монокристаллического кремния. Расчеты же для других технологически важных материалов, в том числе диоксида кремния и меди, проводились только для очень ограниченного класса структур.


Трехмерное моделирования распыления многослойных структур в настоящее время можно провести только с помощью подходов, полностью основанных на применении метода Монте-Карло. Отметим, что данный метод хорошо подходит для изучения фундаментальных аспектов взаимодействия ионов с веществом, однако требует больших вычислительных мощностей и времен расчета для моделирования практически важных структур с реалистичными размерами. В проекте ученых из МИЭТа будет реализовано моделирование, основанное на расчете потоков частиц, с применением современного и высокоэффективного метода функций уровня.


 


Сроки реализации


Реализация проекта (грант РНФ № 21-79-00197) запланирована на 2021–2023 годы. В команду проекта помимо руководителя войдет магистрант 2-го года обучения НИЛЭМИ МИЭТ Олег Подорожний. Выполнение задач проекта позволит создать пакет программ, дающий возможность с высокой точностью предсказывать форму рельефа, создаваемого фокусированным ионным пучком в многослойных мишенях. Благодаря этому расширится область применения ФИП как современного и универсального метода наноструктурирования.


 


 


Источник: https://miet.ru/news/137338


 


{full-story limit="10000"}
Ctrl
Enter
Заметили ошЫбку?
Выделите текст и нажмите Ctrl+Enter
Мы в
Комментарии
Минимальная длина комментария - 50 знаков. комментарии модерируются
Комментариев еще нет. Вы можете стать первым!
Комментарии для сайта Cackle


Смотрите также
интересные публикации

      
Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика