Как сделать кремниевые солнечные панели в 1,5 раза эффективнее придумали ученые США - «Новости Электроники» » Новости Электроники.
Интернет портал Mobzilla.su предлагает огромный выбор новостей с доставкой на дом. » Новости Электроники » Как сделать кремниевые солнечные панели в 1,5 раза эффективнее придумали ученые США - «Новости Электроники»
Как сделать кремниевые солнечные панели в 1,5 раза эффективнее придумали ученые США - «Новости Электроники»
Команда исследователей из Иллинойсского университета в Урбане-Шампейне заявила, что наслоение особых материалов поверх ячеек стандартных солнечных батарей позволит создать фотоэлементы в 1,5 раза эффективнее существующих. Результаты исследования, проведенного под руководством профессора



Команда исследователей из Иллинойсского университета в Урбане-Шампейне заявила, что наслоение особых материалов поверх ячеек стандартных солнечных батарей позволит создать фотоэлементы в 1,5 раза эффективнее существующих.


Результаты исследования, проведенного под руководством профессора электротехники и компьютерной инженерии Минджу Ларри Ли, опубликованы в журнале Cell Reports Physical Sciences.



«Кремниевые солнечные панели широко распространены, потому что они доступны и могут преобразовывать чуть более 20% солнечного света в электроэнергию», — сказал Ли, — «Однако, как и компьютерные микросхемы на основе кремния, кремниевые солнечные элементы в настоящее время достигают предела своих возможностей, поэтому поиск способов увеличения их эффективности привлекателен и для поставщиков, и для потребителей электроэнергии».



В ходе исследования команда Минджу Ларри Ли наносила на кремниевые фотоэлементы слой арсенида-фосфида галлия (GaAsP). Оба эти материала хорошо поглощают солнечный свет и отлично дополняют друг друга. При этом элемент из арсенида-фосфида галлия во время работы выделяет мало тепла. А кремниевые фотоячейки эффективнее преобразовывают свет инфракрасной области спектра.





«Эти фотопанели похожи на спортивную команду, в которой один — быстрый, другой — сильный, а третий — отличный защитник. Аналогичным образом двухслойные солнечные элементы работают как команда, в них лучшие свойства отдельных материалов используются для создания единого более эффективного устройства», - объясняет Ли.



Арсенид-фосфид галлия и аналогичные ему полупроводники эффективны и стабильны. Но их высокая цена делает нецелесообразным изготовление солнечных панелей исключительно из этих материалов. Поэтому команда Ли использует в качестве основы для своих разработок стандартные кремниевые фотопанели.


Одним из серьезных затруднений, с которым столкнулись исследователи, стало образование мельчайших дефектов в слоях арсенида-фосфида галлия, особенно на границе с кремнием, при формировании дополнительного слоя. Такие нарушения в структуре материала снижают производительность и надежность фотопанелей. Добиться значительных успехов в решении этой проблемы позволила новая технология формирования ячеек арсенида-фосфида галлия, разработанная ведущим автором исследования Шичжао Фань.


По заявлению Минджу Ларри Ли, использование многослойных солнечных батарей вместо стандартных кремниевых позволит получать в 1,5 раза больше энергии при той же площади. Автор исследования признает, что препятствия к превращению разработки в коммерческий продукт еще остаются, но Ли надеется, что поставщики и потребители энергии по достоинству оценят повышение эффективности солнечных панелей путем добавления инновационных материалов к стандартным.





Источник: techxplore.com





{full-story limit="10000"}
Ctrl
Enter
Заметили ошЫбку?
Выделите текст и нажмите Ctrl+Enter
Мы в
Комментарии
Минимальная длина комментария - 50 знаков. комментарии модерируются
Комментариев еще нет. Вы можете стать первым!
Комментарии для сайта Cackle


Смотрите также
интересные публикации

      
Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика